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FIGURE 6-2i

A schematic illustration of the NH,
molecule. The light spheres represent
the three Hatomsarranged ina plane,
The dark spheres represent two
equivalent equilibrium positions of
the single N atom.

lower allowed energies of this binding potential are below the top of the barrier, as indicated
in the figure. But penetration of the classically excluded region allows the N atom to tunnel
through the barrier. If it is initially on one side, it will tunnel through and eventually appear on
the other side. Then it will do it again in the opposite direction. The N atom actually oscillates
slowly back and forth across the plane of the H atoms. The oscillation frequency is » =
2.3786 x 10'° Hz, when the molecule is in its ground state. This frequency is much lower than
those found in molecular vibrations not involving barrier penetration, or in other atomic or
molecular phenomena. Due to the resulting technical simplifications, the frequency was used
as a standard in the first atomic clocks which measure time with maximum precision.

A recent, and very useful, example of barrier penetration of electrons is found in the tunnel
diode. This is a semiconductor device, like a transistor, which is used in fast electronic
circuits since its high frequency response is much better than that of any transistor. The
operation of a tunnel diode will be explained in Chapter 13, in the context of a discussion of
semiconductors. So here we shall say only that the device employs controllable barrier
penetration to switch currents on or off so rapidly that it can be used to make an oscillator
that can operate at frequencies above 1011 Hz,

6-7 The Square Well Potential

In the preceding sections we have treated the motion of particles in potentials which
are not capable of binding them to limited regions of space. Although a number of
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FIGURE 6-22

The potential energy of the N atom in the NH; molecule, as a function of
its distance from the plane containing the three H atoms, which lies at
« = 0. In its lower energy states, the total energy of the molecule lies
below the top of the barrier separating the two minima, as indicated by
the eigenvalues of the potential shown in the figure.
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FIGURE 6-23
A square well potential.

interesting quantum phenomena showed up, energy quantization did not. Of course
we know, from the qualitative discussion of the last chapter, that energy quantization
can be expected only for potentials which are capable of binding a particle. In this
section we shall discuss one of the simplest potentials having this property, the square
well potential.

The potential can be written

Vo x < —af2orx> +al2
V(z) = (6-58)
0 —al2 < x < +af2
The illustration in Figure 6-23 indicates the origin of its name. If the particle has total
energy E < V,, then in classical mechanics it can be only in the region —al2 <z <
+a/2 (within the well). The particle is bound to that region and bounces back and forth
between the ends of the region with momentum of constant magnitude but alternating
direction. Furthermore, any value E > 0 of the total energy is possible. But in quantum
mechanics only certain discretely separated values of the total energy are possible.

The square well potential is often used in quantum mechanics to represent a situa-
tion in which a particle moves in a restricted region of space under the influence of
forces which hold it in that region. Although this simplified potential loses some
details of the motion, it retains the essential feature of binding the particle by forces
of a certain strength to a region of a certain size. From the discussion in Example 6-2
it is apparent that it is a good approximation to represent the potential acting on a
conduction electron in a block of metal by a square well. The depth of the square
well is around 10 eV, and its width equals the width of the block. Figure 6-24 indicates,
from a point of view different from that used in Example 6-2, how something like a
square well can be obtained by superimposing the potentials produced by the closely
spaced positive ions in the metal. In Example 6-3, we indicated that the motion of a
neutron in a nucleus can be approximated by assuming that the particle is in a square
well potential with a depth of about 50 MeV. The linear dimensions of the potential
equal the nuclear diameter, which is about 10~** m.

We begin our treatment by considering, qualitatively, the form of the eigenfunctions
which are solutions to the time-independent Schroedinger equation for the square well
potential of (6-58). As in the preceding sections, the problem decomposes itself into
three regions: < —a/2 (left of the well), —a/2 <2 < +a/2 (within the well), and
x> +a2 (right of the well). The so-called general solution to the equation for the
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FIGURE 6-24 ‘aYa

A qualitative indication of how an
approximation to a square well po-
tential results from superimposing
the potentials acting on a conduction

electron in a metal. The potentials Many closely spaced

are due to the closely spaced positive fons in line
ions in the metal. AN AAAAAANARAAAAA
region within the well is
e ke \/2mE
p(x) = Ae'™® 4 Be ™t where k; = 5 —al2 < x < +al2  (6-59)

The first term describes waves traveling in the direction of increasing «, and the second
term describes waves traveling in the direction of decreasing x. (This solution was
derived in Section 6-2. If the student has not studied that section, he can easily show
that it is a solution to the time-independent Schroedinger equation, for any values
of the arbitrary constants 4 and B, by substituting it into (6-2).)

Now, the classical description of the particle bouncing back and forth within the
well suggests that the eigenfunction in that region should correspond to an equal
mixture of waves traveling in both directions. The two oppositely directed traveling
waves of equal amplitude will combine to form a standing wave. We can obtain such
behavior by setting the arbitrary constants equal to one another, so that 4 = B.
This yields

w(x) — B(eikla: + e~ik12)
which we write as

ezklm + e—zkla:

p(z) = B’

where B is a new arbitrary constant defined by the relation B’ = 2B. But this com-
bination of complex exponentials gives us simply

\/2mE

y(x) = B cos ki where k; = e (6-60)

This eigenfunction describes a standing wave since inspection of the associated wave
function ¥'(z,1) = p(x)e="F* shows that it has nodes in the fixed locations where
cos kx = 0.

We can also obtain a standing wave by setting —A4 = B. This gives

9() = A(e™* — eihe)
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which we write as
€ e
2i
where A’ is a new arbitrary constant defined by A’ = 2i4. But this is just

ikyx _ ke

p(z) = A’

y(x) = A sin kx where k; = B (6-61)

Since both (6-60) and (6-61) specify solutions to the time-independent Schroedinger
equation for the same value of E, and since that differential equation is linear in p(x),
their sum

. , JImE
y(x) = A sin kyx + B cos kyx  where k; = . —al2 <z < +af2 (6-62)

is also a solution, as can be verified by direct substitution. In fact, this is a general
solution to the differential equation for the region within the well because it contains
two arbitrary constants—it is just as general as the solution of (6-59). Mathematically,
the two are completely equivalent. However, (6-62) is more convenient to use in
problems involving the motion of bound particles. Physically, (6-62) can be thought of
as describing a situation in which a particle is moving in such a way that the magnitude
of its momentum is known to be precisely p = hk; = J2mE, but the direction of the
momentum could either be in the direction of increasing or decreasing .

Now consider the solutions to the time-independent Schroedinger equation in the
two regions outside the potential well: # < —a/2 and « > +a/2. In these regions the
general solutions have the forms

_ 2m(V, — E)

p(x) = C1® 4+ De™1®  where ky; = — x < —af2 (6-63)
and
2m(Vy, — E
y(x)=F ¢n® 4 GeFu® where ki = Z/_rr_z(_ho_—) x> +al2 (6-64)

The two forms of y(x) describe standing waves in the region outside the well, since in
the associated wave function ¥'(x,t) = p(x)e £ the « and ¢ dependences occur as
separate factors. These standing waves have no nodes, but they will be joined onto
the standing waves inside the well which do have nodes. (The general solutions were
derived in Section 6-3. Their validity, for any values of the arbitrary constants C, D,
F, and G, can easily be verified by students who skipped that section by substitution
in (6-13).)

Eigenfunctions valid for all # can be constructed by joining the forms assumed, in
each of the three regions of z, by the general solutions to the time independent
Schroedinger equation. These three forms involve six arbitrary constants: A’, B’, C,
D, F, and G. Now since an acceptable eigenfunction must everywhere remain finite,
we can immediately see that we must set D = 0 and F = 0. If this were not done the
second exponential in (6-63) would make y(z) > c© as x —> —o0, and the first
exponential in (6-64) would make y(z) — oo as  — 4 o0. Four more equations
involving the remaining arbitrary constants can be obtained by demanding that ()
and dy(x)/dx be continuous at the two boundaries between the regions, * = —a/2
and x = +af2, as is required for acceptable eigenfunctions. (They are already single
valued.) But we cannot allow all four of the remaining arbitrary constants to be
specified by these four equations. One of them must remain unspecified so that the
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A square well potential and its three
bound eigenvalues. Not shown is a
continuum of eigenvalues of energy ; OEl
E >V, ~aj2 0 +a/2

amplitude of the eigenfunction can be arbitrary. Arbitrary amplitude is required
because the differential equation is linear in the eigenfunction w(z). Thus there seems
to be a discrepancy between the number of equations to be satisfied and the number
of constants that can be adjusted, but it is resolved by treating the total energy E as
an additional constant that can be adjusted, as needed. We shall find that this pro-
cedure works, but only for certain values of E. That is, there will emerge a certain
set of possible values of the total energy £, and so the energy will be quantized to a set
of eigenvalues. Only for these values of the total energy does the Schroedinger
equation have acceptable solutions.

It is not difficult to carry through this procedure, as we shall see shortly in treating
a special case. But the general case leads to a solution involving a complicated
transcendental equation (an equation in which the unknown is contained in the
argument of a function such as a sinusoidal), which precludes expressing the solution
mathematically in a concise way. Therefore, we relegate the details of the general
solution to Appendix G, and here continue for a while with our qualitative discussion.

Figures 6-25 and 6-26 show, respectively, the eigenvalues and eigenfunctions for the
three bound states of a particle in a particular square well potential. Not shown are a
continuum of eigenvalues which extend from the top of the well on up, since any value
of total energy E that is greater than the height of the potential walls ¥} is allowed.
Also not shown are the continuum eigenfunctions. Focusing attention first on the
region of « within the well, we note that the curvature of the sinusoidal part of the
eigenfunction increases as the energy of the corresponding eigenvalue increases. As a
consequence, the higher the energy of the eigenvalue the more numerous are the
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FIGURE 6-26
The three bound eigenfunctions for the square well of Figure 6-25.
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FIGURE 6-27
The first eigenfunction for a square well with walls of moderate height.

oscillations of the corresponding eigenfunction and the higher is its wave number.
These results reflect the fact that the wave number k7, in the solution of (6-62) for the
region inside the well, is proportional to £'/2, The square well potential depicted in
the figure does not have a fourth bound eigenvalue because the associated value of &y,
and therefore of EV/2, would be too large to satisfy the binding condition £ < V.

Now consider the parts of the eigenfunctions that extend into the regions outside
the well. In classical mechanics a particle could never be found in these regions since
its kinetic energy is p*/2m = E — V(x), which is negative where E < V(z). Note that
the eigenfunctions go to zero in these classically excluded regions more rapidly the
lower the energy of the corresponding eigenvalue. This agrees with the fact that the
exponential parameter kyy, in the solutions of (6-63) and (6-64) for the region outside
the well, is proportional to (V, — E)'2. It also agrees with the idea that the more
serious the violation of the classical restriction, that the total energy E must be at
least as large as the potential energy V(z), the more reluctant the eigenfunctions are to
penetrate the classically excluded regions.

It is instructive to consider the effect on the eigenfunctions of letting the walls of the
square well become very high, i.e., letting ¥, — co. Shown in Figure 6-27 is the first
eigenfunction for a square well potential. As V,, —> co, E; will increase, but it will do
so very slowly compared to the increase in V. This is true because E; is determined
essentially by the requirement that approximately half an oscillation of the eigen-
function must fit into the length of the well. Therefore, the exponential parameter
ki = \/Zm(Vo — E)[h, which determines the behavior of the eigenfunction in the
regions outside of the well, will become very large as ¥, becomes very large, and the
eigenfunction will go to zero very rapidly outside the well. In the limit, y, () must be
zero for all z < —a/f2 and for all = > +a/2. For a square well with infinitely high
walls, p, () has the form shown in Figure 6-28. It is apparent that this argument holds
for all the eigenfunctions of such a potential. That is, for all values of », in an infinite
square well potential

w(x) =0 x < —af2or x> +al2 (6-65)

This condition for infinite square well eigenfunctions can only be satisfied by violating
atx = £af2 the requirement of Section 5-6 that the derivative dy, (x)/dx of an eigen-
function be continuous everywhere; but if the student will review the argument which

Vi(x)

o« cos |[(ZmE1/h)x]

-af2 0 +a/2
FIGURE 6-28
The first eigenfunction of a square well with walls of infinite height.
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was presented to justify the requirement, he will find that the derivative must be
continuous only when the potential is finite.

6-8 The Infinite Square Well Potential

The infinite square well potential is written as

o r < —af2or x> +al2

Vo=, —a2 <z < +a2 (6%

and is illustrated in Figure 6-29. It has the feature that it will bind a particle with any
finite total energy £ > 0. In classical mechanics, any of these energies are possible, but
in quantum mechanics only certain discrete eigenvalues E,, are allowed.

We shall see that it is very easy to find simple and concise expressions for the eigen-
values and eigenfunctions of this potential because the transcendental equation that
arises in the solution of its time-independent Schroedinger equation happens to have
simple solutions. For values of the quantum number n which are not too large, these
eigenvalues and eigenfunctions can often be used to approximate the corresponding
(same n) eigenvalues and eigenfunctions of a square well potential with large but
finite V,. For instance, we mentioned before that it is a very good approximation to
take the potential for a conduction electron in a block of metal to be a finite square
well. In Example 6-2 we showed that for the typical metal Cu the eigenfunctions
penetrate into the classically excluded regions exterior to the well by a distance of
about 107* m. This distance is so small compared to the width of the square well,
which is the width of the Cu block, that for many purposes it is an equally good
approximation to use the corresponding eigenfunctions and eigenvalues for an infinite
square well, and we shall do so later. We shall also use infinite square well potentials
to discuss the quantum mechanical properties of a system of gas molecules, and other
particles, which are strictly confined within a box of certain dimensions. A particle
moving under the influence of an infinite square well potential is often called a
particle in a box.

In the region within the well the general solution to the time-independent Schroe-
dinger equation for the infinite square well potential can be writtenasthe standing wave
of (6-62), which we simplify, by dropping the primes, into the form

JImE

yp(x) = Asin kx + Bcos kx where k = P

—al2 < x < +af2 (6-67)

(Students who have skipped the preceding sections can see that this y(x) represents a
standing wave by noting that the associated wave function W(z,r) = y(x)e—"F/* has
fixed nodes. They can verify that the () is actually a solution to the applicable
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FIGURE 6-29
An infinite square well potential. —af2 0 +af2




Sec. 6-8 THE INFINITE SQUARE WELL POTENTIAL 233

time-independent Schroedinger equation by substituting it into (6-2).) According to
the condition of (6-65), w(z) has the value zero in the regions outside the well. Of
course, this must be true so that the probability density will be zero in these regions,
since the particle is strictly confined within the well by its infinitely high potential walls.
In particular, at the boundaries of the well

y(x) =0 x = +af2 (6-68)
That is, the standing wave has nodes at the walls of the box.

Now we develop relations which are satisfied by the arbitrary constants 4 and B,
and by the parameter k. Applying the boundary conditions of (6-68) atz = +a/2, we
obtain

A sin -"2—“ +B cos%’ =0 (6-69)

Atz = —af2, (6-68) yields

. ka ka
Asin | —— +Bcos(——)=0
( 2) 2

or
—Asin ka + Bcos ka _ 0 (6-70)
2 2
Addition of the last two numbered equations gives
2B cos %{1_ =0 (6-71)
Subtraction gives
2A sin % =0 (6-72)

Both (6-71) and (6-72) must be satisfied. When this is done, y(z) and dy(z)/dx will be
everywhere finite and single valued, and y(x) will be everywhere continuous. As
discussed at the end of the preceding section, dy(x)/dx will be discontinuous at
x = +a2.

There is no value of the parameter k for which both cos (ka/2) and sin (ka/2) are
simultaneously zero. And we certainly do not want to satisfy the two equations by
setting both 4 and B equal to zero, for then y(x) = 0 everywhere and the eigenfunction
would be of no interest because the associated particle would not be in the box!
However, we can satisfy these equations either by choosing k so that cos (ka/2) is zero
and also setting A equal to zero, or by choosing k so that sin (ka/2) is zero and also
setting B equal to zero. That is, we take either

A=0 and cos % =0 (6-73)
or
B=0 and sin % =0 (6-74)
Thus there are two classes of solutions.
For the first class
y(x) = Bcos kx where cos%q =0 (6-75)

For the second class

() = A sin ke where sin 5‘23 —0 (6-76)
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The conditions on the wave number k, expressed in (6-75) and (6-76), are in the
form of transcendental equations since the unknown, k, occurs in the arguments of
the sinusoidals; but these transcendental equations happen to be so simple that their
solutions can be written in concise form immediately. The allowed values of k for the
first class, (6-75), are

2 2 22
since cos (7/2) = cos (37m/2) = cos (57/2) = --. = 0. It is convenient to express
this as
k, =27 n=1,35,... (677
a

The allowed values of & for the second class, (6-76), are
ka

— =7,2m, 3, ...
since sin 77 = sin 27 = sin 37 = - - . = 0. This can also be expressed as
k, =% n=24.6,... (678)
a

Knowing the allowed values of k, we can then obtain the solutions to the time-
independent Schroedinger equation for the infinite square well from (6-75) and (6-76).
We find

p(x) = B,cosk,x  where k, = "% n=135,... (679)
a
and
po(x) = A, sink,x  where k, = 2= n=246,.. . (680)
a

The solution corresponding to n = 0 is wy(x) = 4 sin 0 = 0; it is ruled out because
it does not describe a particle in a box. The quantum number » has been used to label
the different solutions of the transcendental equations, and the corresponding eigen-
functions. If it is necessary to apply the normalization condition, the constants 4, and
B,, which specify the amplitudes of the eigenfunctions, will thereby be determined
(see Example 5-10); but it is not usually necessary to do this.

The quantum number # is also used to label the corresponding eigenvalues. Using
the relation k = \/2mE/h of (6-67), and the expression k, = nw/a in (6-79) and
(6-80) for the allowed values of k, we find

Bk2  mih*n®
E,= U
2m 2ma®

n=1,2,3,4,5... (6-81)

Thus we conclude that only certain values of the total energy E are allowed. The total
energy of the particle in the box is quantized.

The quantitative treatment of the finite square well, discussed in the preceding section and
carried out in Appendix G, is essentially the same as what we have just gone through. But the
penetration of the eigenfunction into the regions outside the well, which varies with the energy
of the associated eigenvalue, leads to more complicated transcendental equations for & that
must be solved graphically or numerically.

Figure 6-30 illustrates the infinite square well potential and its first few eigenvalues
specified by (6-81). Of course, all the ecigenvalues are discretely separated for an
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infinite square well potential since the particle is bound for any finite eigenvalue. Note
that the pattern formed by the first three eigenvalues of the infinite square well is quite
similar to that formed by the three bound eigenvalues of the finite square well shown
in Figure 6-25. In this regard, the infinite square well results provide an approximation
to the finite square well results. However, in detail each potential energy function
V(%) has its own characteristic set of bound eigenvalues E,,.
Of particular interest is the energy of the first eigenvalue. For the infinite square
well it is
n*h*
E, P (6-82)

This is called the zero-point energy. It is the lowest possible total energy the particle
can have if it is bound by the infinite square well potential to the region —a/2 < 2 <
+af2. The particle cannot have zero total energy. The phenomenon is basically a result
of the uncertainty principle. To see this, consider the fact that if the particle is bound
by the potential, then we know its z coordinate to within an uncertainty of about
Az ~ q. Consequently, the uncertainty in its # momentum must be at least Ap ~
h|2Ax ~ h[2a. The uncertainty principle cannot allow the particle to be bound by the
potential with zero total energy since that would mean the uncertainty in the momen-
tum would be zero. For the particular case of eigenvalue F,;, the magnitude of the

momentum is p; ~ VamE, = whia. Since the particle is in a state of motion described
by a standing wave eigenfunction, it can be moving in either direction and the actual
value of the momentum is uncertain by an amount which is about Ap ~ 2p, ~ 2=h/a.
The uncertainty product Az Ap =~ a2nhfa ~ 2=h is roughly in agreement with the
lower limit //2 set by the uncertainty principle. (Compare with the accurate calculation
of Example 5-10.)

We conclude that there must be a zero-point energy because there must be a zero-
point motion. This is in sharp contrast to the idea, of classical physics, that all motion
ceases when a system has its minimum energy content at the temperature of absolute
zero. The zero-point energy is responsible for several interesting quantum phenomena
that are seen in the behavior of matter at very low temperatures. A striking example
is the fact that helium will not solidify even at the lowest attainable temperature
(~0.001°K).

The first few eigenfunctions of the infinite square well potential are shown in Figure
6-31. Note that the number of half wavelengths of each eigenfunction is equal to its
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quantum number #, and that therefore the number of nodes is n + 1. By comparing
these eigenfunctions with the corresponding eigenfunctions of the finite square well
shown in Figure 6-26, the student can see again how the results obtained for the simple
potential can be used to approximate those of the more complicated potential (most
accurately for eigenfunctions of lowest # value).

Students familiar with stringed musical instruments may notice that the eigenfunc-
tions for a particle strictly confined between two points at the ends of the box look
like the functions describing the possible shapes assumed by a vibrating string fixed
at two points at the ends of the string. The reason is that both systems obey time-
independent differential equations of analogous form, and they satisfy analogous
conditions at the two points. Here is yet another example of the relation between
quantum mechanics and classical wave motion. Musically inclined students may also
notice that the frequencies, v, = E, [h, of the time-dependent factor in the wave func-
tions for the confined particle satisfy the relation v, oc n? (since E, = n2hn?2ma?),
whereas the frequencies of the vibrating string satisfy the “harmonic progression”
v, o n. This difference arises because the two systems obey time-dependent differ-
ential equations which are not at all analogous.

Example 6-5. Derive the infinite square well energy quantization law, (6-81), directly from
the de Broglie relation p = h/4, by fitting an integral number of half de Broglie wavelengths
A[2 into the width a of the well.
It is clear from Figure 6-31 that the infinite square well eigenfunctions satisfy the following
relation between the de Broglie wavelengths and the length of the well
A

n§=a n=1,2,3,...

That is, an integral number of half-wavelengths fits into the well. This means

2a
A=— n=1,2,3,...
n

So according to de Broglie, the corresponding values of the momentum of the particle are

h
p=z=

NI&-
QN

n=1,2,3,...

As the potential energy of the particle is zero within the well, its total energy equals its kinetic
energy. Thus
pZ h2n2 7_1_2,i2n2

T 2m 2mda® 2mad

n=1,2,3,...

in agreement with (6-81). This trivial calculation can be used only for the simplest case of a
bound particle—the case of an infinite square well potential. It cannot be applied to find the
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eigenvalues or eigenfunctions of a more complicated potential such as a finite square well.
(See also the discussion, in connection with (4-25), of the application of the Wilson-
Sommerfeld quantization rule to the infinite square well.) <

Example 6-6. Before the discovery of the neutron, it was thought that a nucleus of atomic
number Z and atomic weight 4 was composed of A protons and (4 — Z) electrons, but there
was a serious problem concerning the magnitude of the zero-point energy for a particle as light
as an electron confined to a region as small as a nucleus. Estimate the zero-point energy E.

Setting the electron mass m equal to 1073 kg and the width of the well equal to 1074 m
(a typical nuclear dimension), from (6-82) we obtain

m2h2 10 x 107%8 joule®~sec? 10~
= oma T I X 100kg x 108 me 2 Joule
__107? joule y leVv
2 1.6 x 10719 joule
= 3000 MeV

~3 x 10%eV

For estimating the zero-point energy, we are certainly justified in treating the electron as if it
were confined to an infinite square well. We are also justified in ignoring the three-dimensional
character of the actual system. But we would not be justified in quoting the value of E just
obtained because it is extremely large compared to the electron rest mass energy mc? ~
0.5 MeV. A relativistically valid analogue of (6-82) must be used in this particular problem.

The required formula can be obtained from the technique used in Example 6-5. Both of the
equations 4 = 2a/nand p = h[Aretain their validity in the extreme relativistic range. So, if we
replace E = p%2m by E = cp (the energy-momentum relation E? = ¢%? + mZc* in the
limit E > myc?), we immediately obtain for n = 1

£ ch chn  w=ch 3 x 3 x 108m/sec x 1073 joule-sec
~PTA T2 T T 107 m
lev

* 16 x 102 joule

~6 x 107eV = 60 MeV

An electron could be bound in a nucleus with this zero-point energy, if the magnitude of the
depth of the binding potential were greater than the magnitude of the zero-point energy. There
is a binding potential acting on the electron due to the Coulomb attraction of the positive
charge of the nucleus, but the magnitude of the potential is not great enough. We may esti-
mate this magnitude by setting r = 1074 m, and Q; = Ae, Q, = —e, where e is the magni-
tude of the electron charge, in the Coulomb potential formula. We obtain, for a typical value
of A =100

0,0, Ae? 102 x (1.6 x 107° coul)? lev

dregr  Ameyr = T 101 coul?/nt-m? x 1074 m “ 16 x 10719 joule
~ —1.6 x 107eV = —16 MeV

This is four times smaller than the required binding energy. So an electron could not be bound
in a nucleus because of the zero-point energy required by the uncertainty principle.

In 1932 Chadwick, motivated by a suggestion of Rutherford, discovered the neutron.
We now know that a nucleus is composed of Z protons and (4 — Z) neutrons. Because
neutrons are heavy particles, like protons, their zero-point energy in a nucleus is relatively low
so they can be bound without difficulty. Indeed, we shall see in Chapter 15 that some of the
most important properties of nuclei can be explained in terms of the quantum states of
neutrons, and protons, moving in a (finite) square well potential. «

Figure 6-31 makes quite apparent the essential difference between the two classes
of standing wave eigenfunctions specified by (6-79) and (6-80). The eigenfunctions



238 SOLUTIONS OF TIME-INDEPENDENT SCHROEDINGER EQUATIONS Chap. 6

of the first class, v, (x), p3(2), v;(x), . . ., are even functions of z; that is
(=) = +y() (6-83)
In quantum mechanics, these functions are said to be an even parity. The eigenfunc-
tions of the second class, y,(%), ¥,(%), pe(2), . . . , are odd functions of z; that is
p(—2) = —y() (6-84)

and are said to be of odd parity.

The eigenfunctions have a definite parity, either even or odd, because we have
chosen the origin of the  axis so that the symmetrical square well potential V(z) is an
even function of x. Note that if we redefine the origin of the = axis in Figure 6-31 to
be at, say, the pointx = —a/2, the eigenfunctions will no longer have a definite parity.

These results are obtained for the square well potential, and for any other sym-
metrical potential, since measurable quantities describing the motion of a particle in
bound states of such potentials must also be symmetrical about the point of symmetry
of the potential. If the origin of the z axis is chosen to be at that symmetry point, then
the function describing the measurable quantity must be an even function. As an
example, this is true for the probability density function P(z,t), for both even and odd
parity eigenfunctions, since

P(—z,1) = p*(=2)p(—2) = [£p*@)[£y@)] = p*@)p() = P,r) (6-85)

This is not true for the wave function itself in the case of an odd parity eigenfunction;
such a wave function is an odd function of z, but this is not a contradiction because
the wave function itself is not measurable. Eigenfunctions for unbound states of
potentials that are even functions of x do not necessarily have definite parities since
they do not necessarily describe symmetrical motions of the particle.

In one dimension, the fact that standing wave eigenfunctions have definite parities,
if V(—2) = V(=), is of importance largely because it simplifies certain calculations.
In three dimensions, the property has a deeper significance that will be seen first in
Chapter 8 in connection with the emission of radiation by an atom making a transition
from an excited state to its ground state.

The probability density functions, corresponding to the first few eigenfunctions
of the infinite square well, are plotted in Figure 6-32. Also illustrated in the figure is
the probability density that would be predicted by classical mechanics for a bound
particle bouncing back and forth between —a/2 and +a/2. Since the classical particle
would spend an equal amount of time in any element of the z axis in that region, it
would be equally likely found in any such element. The quantum mechanical proba-
bility density oscillates more and more as # increases. In the limit that » approaches
infinity, that is for eigenvalues of very high energy, the oscillations are so compressed
that no experiment could possibly have the resolution to observe anything other than
the average behavior of the probability density predicted by quantum mechanics.

Y3 Y3

CXNC /TN

FIGURE 6-32
The first few probability density

functions for an infinite square well
potential. The dashed curves are !’“‘/N1

the predictions of classical mechanics. —a/2 0 +a/2
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Furthermore, the fractional separation of the eigenvalues approaches zero as n
approaches infinity, so in that limit their discreteness cannot be resolved. Thus we see
that the quantum mechanical predictions approach the predictions of classical
mechanics in the large quantum number, or high-energy, limit. This is what would
be expected from the correspondence principle of the old quantum theory.

6-9 The Simple Harmonic Oscillator Potential

We have discussed several potentials which are discontinuous functions of position
with constant values in adjacent regions. Now we turn to the more realistic cases of
potentials which are continuous functions of position. It turns out that there are only
a limited number of such potentials for which it is possible to obtain solutions to the
Schroedinger equation by analytical techniques. But, fortunately, these potentials
include some of the most important cases, such as the Coulomb potential, V(r) oc r—1,
discussed in the following chapter, and the simple harmonic oscillator potential,
V(x) oc 22, discussed in this section. (In this connection, we should remind the student
that solutions to the Schroedinger equations for potentials of any form can always be
obtained by the numerical techniques developed in Appendix F.)

The simple harmonic oscillator is of tremendous importance in physics, and all
fields based on physics, because it is the prototype for any system involving oscillations.
For instance, it is used in the study of: the vibration of atoms in diatomic molecules,
the acoustic and thermal properties of solids which arise from atomic vibrations,
magnetic properties of solids that involve vibrations in the orientation of nuclei, and
the electrodynamics of quantum systems in which electromagnetic waves are vibrating.
Generally speaking, the simple harmonic oscillator can be used to describe almost any
system in which an entity is executing small vibrations about a point of stable
equilibrium.

At a position of stable equilibrium, the potential function ¥ (x) must have a mini-
mum. Since any realistic potential function is continuous, the function in the region
near its minimum can almost always be well approximated by a parabola, as illus-
trated in Figure 6-33. But for small vibrations the only thing that counts is what V{(x)
does near its minimum. If we choose the origins of the « axis and the energy axis to
be at the minimum, we can write the equation for this parabolic potential function as

V(x) = 29 o2 (6-86)

where C is a constant. Such a potential is illustrated in Figure 6-34. A particle moving
under its influence experiences a linear (or Hooke’s law) restoring force F(x) =
—dV(x){dx = — Cz, with C being the force constant.

V(x)

FIGURE 6-33

Illustrating the fact that any con-
tinuous potential with a minimum
(solid curve) can be approximated
near the minimum very well by a
parabolic potential (dashed curve). ¢
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Vix)
FIGURE 6-34
The simple harmonic oscillator
potential. 0 ¥

Classical mechanics predicts that a particle under the influence of the linear restoring
force exerted by the potential of (6-86), which is displaced by an amount x, from the
equilibrium position and then released, will oscillate in simple harmonic motion about
the equilibrium position with frequency

v = L /c (6-87)
27N m
where m is its mass. According to that theory, the total energy E of the particle is
proportional to j, and can have any value since #, is arbitrary.

Quantum mechanics predicts that the total energy E can assume only a discrete set of
values because the particle is bound by the potential to a region of finite extent. Even
in the old quantum theory this was known. The student will recall that Planck’s
postulate predicts the energy of a particle executing simple harmonic oscillations can
assume only one of the values

E, = nhy n=0,1,2,3,... (6-88)
What are the allowed energy values predicted by Schroedinger quantum mechanics
for this very important potential? To find out, the time-independent Schroedinger
equation for the simple harmonic oscillator potential must be solved.

The mathematics used in the analytical solution to the equation is not difficult
to follow, and it is quite interesting; but since the solution is very lengthy it has been
placed in Appendix H. Other than verifying by substitution a typical eigenfunction
and eigenvalue obtained from the solution, here we shall concentrate on describing the
results of the solution and discussing their physical significance.

Itis found that the eigenvalues for the simple harmonic oscillator potential are given
by the formula

E,=(n+ 12y n=20,1,2,3,... (6-89)

where » is the classical oscillation frequency of the particle in the potential. All the
eigenvalues are discrete since the particle is bound for any of them. The potential,
and the eigenvalues, are shown in Figure 6-35.

If we compare the Schroedinger results with the Planck postulate, we see that in
quantum mechanics all the eigenvalues are shifted up by an amount A»/2. As a
consequence, the minimum possible total energy for a particle bound to the potential
is Ey, = hv[2. This is the zero-point energy for the potential, the existence of which
is required by the uncertainty principle. Therefore, Planck’s postulated energy
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FIGURE 6-35

The first few eigenvalues of the simple
harmonic oscillator potential. Note
that the classically allowed regions
(between the intersections of V()
and E,) expand with increasing Eo
values of E,,.

quantization of the simple harmonic oscillator was actually in error by the additive
constant /4v/2. This constant cancels out in most applications of Planck’s postulate
because they involve only differences between two energy values. As an example,
consider the electromagnetic radiation emitted by the vibrating charge distribution
of a diatomic molecule whose interatomic spacing is executing simple harmonic
oscillations. Since the frequencies of the emitted photons depend only on the differ-
ences in the allowed energies of the molecule, the additive constant has no effect on
the frequencies of the photons.

But there are observable quantities that show Planck’s postulate is in error because
it does not contain the zero-point energy. The most important example is also connec-
ted with the emission of radiation by a vibrating molecule, or atom. When we study
this subject in a subsequent chapter, we shall see that the rate of emission of the
photons would not agree with experiment unless simple harmonic oscillators have
zero-point energies. In fact, we shall find the only reason why the molecule emits any
radiation is that its vibrations have been stimulated by a surrounding electromagnetic
field whose field strengths are executing simple harmonic oscillations because of the
zero-point energy of the field.

In addition to providing completely correct eigenvalues, quantum mechanics also
provides the eigenfunctions for the simple harmonic oscillator. The eigenfunctions
¥n, corresponding to the first few eigenvalues E,, are listed in Table 6-1 and plotted
in Figure 6-36. The eigenfunctions are expressed in terms of the dimensionless variable
u = [(Cm)"/4/A*/*Jx, which differs from 2 only by a proportionality constant that
depends on the properties of the oscillator. For all values of z, the eigenfunction is

TABLE 6-1. Some Eigenfunctions w(u) for the Simple
Harmonic Oscillator Potential, where u is Related to the
Coordinate x by the Equation u = [(Cm)'/4/a/2]x

Quantum Number Eigenfunctions
0 Yo = Aoe—u2/2
1 vy = Ae 12
2 vy = Ay(1 — 2u2)ev'/2
3 vy = A;Bu — 2uP)ev*/2
4 Py = A,(3 — 12u% + 4ut)e /2
5 vs = A;(15u — 20u® + dud)e "2




242 SOLUTIONS OF TIME-INDEPENDENT SCHROEDINGER EQUATIONS Chap. 6
Ys(x)

—~TT
FIGURE 6-36 Y1(x)
The first few eigenfunctions of the | )

I l/[\ X
simple harmonic oscillator potential. \/%'(x)

The vertical ticks on the x axes in-
dicate the limits of classical motion
shown in Figure 6-35. T 7

given by the product of an exponential, whose exponent is proportional to —z2, times
a simple polynomial of order . The polynomial is responsible for the oscillatory
behavior of v, in the classically allowed region where E, < V(x). The number of
oscillations increases with increasing n because there are »n values of x for which a
polynomial of the order z» has the value zero. These values of z are the locations of
the nodes of y,. The classically allowed regions lie within the vertical marks shown in
Figure 6-36. These regions become wider with increasing n because of the shape of the
simple harmonic oscillator potential ¥(x), as can be seen by inspecting Figure 6-35
which also indicates the classically allowed regions for each E,,. Outside these regions,
the eigenfunctions decrease very rapidly because their behavior is dominated by the
decreasing exponential. Since the relation V(—2) = V() is satisfied by the potential,

we expect that its eigenfunctions should have definite parities. Inspection of Table 6-1
shows this is true, and that the parity is even for even n and odd for odd n. Thus the
eigenfunction for the lowest allowed energy is of even parity, as in the case of a square
well potential. The multiplicative constants 4,, determine the amplitudes of the eigen-
functions. If necessary, the normalization procedure can be used to fix their values,
as in Example 5-7; but this is usually not necessary.

The simple harmonic oscillator eigenfunctions contain a wealth of information
about the behavior of the system. Some of this information was extracted in Chapter
5. For instance, Figures 5-3 and 5-18 gave accurate representations of the probability
density functions for the n =1 and n = 13 quantum states of the oscillator. In
Chapter 8 we shall show how the eigenfunctions can be used to calculate the rate of
emission of radiation by a charged simple harmonic oscillator, and derive the n;, —
n; = %1 selection rule that had to be introduced in the old quantum theory by
arguments based on the rather unreliable correspondence principle.

Example 6-7. Because the simple harmonic oscillator eigenfunctions for small » have fairly
simple mathematical forms, it is not too difficult to verify by direct substitution that they
satisfy the time-independent Schroedinger equation, for the potential of (6-86), and for the
eigenvalues of (6-89). Make such a verification for n = 1. (For n = 0 the wave function was
verified by direct substitution in the Schroedinger equation in Example 5-3.)

The time-independent Schroedinger equation is

To verify that the eigenvalue

E 3}, 3 h C\l/2 3h C\1/2
1= =315, ;) =2"m



TABLE 6-2.

A Summary of the Systems Studied in Chapter 6

Name of Physical Potential and Probability Significant
System Example Total Energies Density Feature
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potential beam from for other
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barrier

Barrier Electron scat- E \/\/\/.\I_w_\v_ No reflection
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(energy peg.atively Vo | ! energies
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Finite Neutron - — V( x) Energy
square bound in /{\/\/‘;\ quantization
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. a a
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Vi(x)
. h ! ' . .

Infinite Molecule ; ' Approximation
square strictly ! lgxp to finite
well confined ] ' square well
potential to box 0 a 0 a

Simple Atom of ! ! Zero-point
harmonic vibrating ' ' energy
oscillator diatomic ! N
potential molecule t -
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and the eigenfunction

(Cm)1/4

iz "

2
y, = Ajue /2 where u =

satisfy the equation, we evaluate the derivatives

dy, dudy (Cm)Vt
T =g = g e Au(—we

3 (Cm)1/4
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Substitution of d*y,/dx* and E| into the equation they are supposed to satisfy yields

R (Cm)V2 ((Cm)\/2 2 C . 35 (C\V/2
“m h PR -3 %+5x%=7;t 21

Since inspection shows this is satisfied, the verification is completed. . |

6-10 Summary

In Table 6-2 we summarize some of the properties of the systems studied in this
chapter. The table gives an abbreviated name for each idealized system, and an ex-
ample of a physical system whose potential and total energies are approximated by the
idealization. It also gives sketches of the forms of the potential and total energies, and
corresponding probability density functions, for each system. If the particle is not
bound, it is incident from the left. We have chosen one significant feature of each
system to list in the table, but there are many other significant features that we have
discussed, which are not listed. In fact, in this chapter we have obtained most of the
important predictions of quantum mechanics for systems involving one particle
moving in a one-dimensional potential. In the following chapters we shall obtain
predictions from the theory for systems involving three dimensions and several
particles.

QUESTIONS
1. Can there be solutions with E < 0 to the time-independent Schroedinger equation for the
zero potential ?

2. Why is it never possible in classical mechanics to have E < ¥(x)? Why is it possible in
quantum mechanics, providing there is some region in which E > V(z)?
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. Explain why the general solution to a one-dimensional time-independent Schroedinger

equation contains two different functions, while the general solution to the corresponding
Schroedinger equation contains many different functions.

. Consider a particle in a long beam of very accurately known momentum. Does a wave

function in the form of a group provide a more or a less realistic description of the
particle than a single complex exponential wavefunction like (6-9)?

. Under what circumstances is a discontinuous potential function a reasonable approxima-

tion to an actual system?

. If a potential function has a discontinuity at a certain point, do its eigenfunctions have

discontinuities at that point ? If not, why not?

. By combining oppositely directed traveling waves of equal amplitudes, we obtain a

standing wave. What kind of a wave do we get if the amplitudes are not equal?

. Just what is a probability flux, and why is it useful?

. How can it be that a probability flux is split at a potential discontinuity, although the

associated particle is not split ?

Is there an analogy between the splitting of a probability flux that characterizes the
behavior of an unbound particle in a one-dimensional system, and the alternative paths
that can be followed by an unbound particle moving in two dimensions through a
diffraction apparatus? Why ?

Exactly what is meant by the statement that the reflection coefficient is one for a particle
incident on a potential step with total energy less than the step height ? What is meant by
the statement that the reflection coefficient is less than one if the total energy is greater
than the step height? Can the reflection coefficient ever be greater than one?

Since a real exponential is a nonoscillatory function, why is a complex exponential an
oscillatory function ?

What do you think causes the rapid oscillations in the group wave function of Figure 6-8
as it reflects from the potential step ?

What is the fallacy in the following statement ? ““Since a particle cannot be detected while
tunneling through a barrier, it is senseless to say that the process actually happens.”

A particle is incident on a potential barrier, with total energy less than the barrier height,
and it is reflected. Does the reflection involve only the potential discontinuity facing its
direction of incidence? If the other discontinuity were removed, so that the barrier
were changed into a step, is the reflection coefficient changed ?

In the sun, two nuclei of low mass in violent thermal motion can collide by penetrating
the Coulomb barrier which separates them. The mass of the single nucleus formed is less
than the sum of the masses of the two nuclei, so energy is liberated. This fusion process is
responsible for the heat output of the sun. What would be the consequences to life on
earth if it could not happen because barriers were impenetrable ?

Are there any measurable consequences of the penetration of a classically excluded region
which is of infinite length? Consider a bound particle in a finite square well potential.

Show from a qualitative argument that a one-dimensional finite square well potential
always has one bound eigenvalue, no matter how shallow the binding region. What would
the eigenfunction look like if the binding region were very shallow ?

Why do finite square wells have only a finite number of bound eigenvalues ? What are the
characteristics of the unbound eigenvalues ?

What would a standing wave eigenfunction for an unbound eigenvalue of a finite square
well look like?



